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ABSTRACT

This paper presents an approach to learn a better music similarity
measure and presents an application to music playlist generation.
Different from previous work, in our approach, automatically de-
tected music attributes are used to represent each song. A set of
kernels is employed in similarity measure, with each kernel measur-
ing on a subset of music attributes and having a different importance
weight. In automatic music playlist generation, a ranking method is
presented, which considers multiple seed songs and possible outlier
seed. Experiments show the effectiveness of the proposed approach,
and the quality of the playlist generated based on automatic annota-
tions is comparable to that based on manual annotations.

Index Terms— Music similarity, music annotation, playlist gen-
eration, music recommendation

1. INTRODUCTION

With thousands of songs in personal collection, and millions of songs
available with online subscription, how to efficiently select favorite
songs to listen and effectively discover new songs becomes a chal-
lenge. To address this challenge, considerable approaches have been
explored to estimate the similarity between songs, and to apply this
similarity in various applications, such as music retrieval, music rec-
ommendation, music discovery, and music playlist generation.

To estimate music similarity, a number of approaches worked on
social data or user data. For example, [1] employed collaborative
filtering to measure the similarity between songs based on users’
preference rating; and [2] built a graph model to infer music simi-
larity based on their co-occurrence in “authored” streams, such as a
music radio program made professionally. However, for those long
tail songs or new songs without sufficient user data, these techniques
become infeasible. To compensate for this disadvantage, some ap-
proaches resorted to analyze music content and use music attributes
in similarity measure. For instance, [3] compared low-level music
features such as Mel Frequency Cepstrum Coefficients (MFCCs) and
spectrum histogram. Although the effectiveness of this method was
reported, a major disadvantage is the big semantic gap between low-
level features and high-level human perceptions. On the other hand,
[4, 5, 6] proposed to estimate music similarity based on mid-level
music attributes (or tags), such as author, genre, and emotion. With
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this representation, the estimated similarity is more likely to match
human perception; and it is also computationally efficient for further
online retrieval and recommendation. However, most of the previous
work, as well as some online services such as Pandora and Last.fm,
relied on manually annotated tags, which is expensive and unscal-
able in dealing with a large music collection.

In this paper, we propose an alternative method to learn and es-
timate music similarity based on automatically detected music at-
tributes, following our previous work on automatic music annotation
[7], in order to reduce manual efforts. Moreover, to estimate music
similarity based on music attributes, direct binary matching [5] or a
simple cosine measure [8] can be further improved with careful con-
sideration. An intuitive idea is that, different attributes of music may
play different roles, and thus need have different weights in similar-
ity measure. Following the idea of Kernel Meta-Training (KMT) in
[4], which employed a family of Mercer kernels to fit the “under-
lying” similarity function, we also utilize a set of kernels to learn
music similarity measure, with each kernel measuring on a subset of
music attributes. The weights of each kernel will be learned from a
training data set, representing the importance of different attributes.
Furthermore, we applied the learned similarity measure in automatic
music playlist generation based on a set of seed songs, where we take
into account the possible outlier seed and sets different importance
weights to different seed songs, correspondingly.

The remainder of our paper is organized as follows: Section 2
summarizes our previous work on automatic music annotation. Sec-
tion 3 presents our approach to learn a music similarity measure.
The playlist generation and ranking method are described in Section
4, and the evaluation results are presented in Section 5.

2. AUTOMATIC MUSIC ANNOTATION

Music annotation aims to assign tags or labels from a semantic
vocabulary to a song, it can be viewed as a multi-label clas-
sification problem. Given a vocabulary V consisting |V| tags
wi ∈ V , and given a song represented by a bag of feature vec-
tors X = {x1, ..., xT }, the goal of music annotation is to find
a set of tags W = {w1, ..., wA} that best describe the song. It
will be convenient to represent the set W as an annotation vector
y = {y1, ..., y|V|}. While yi can be a binary variable representing
the “presence” or “absence” of wi, in our approach, yi is used as a
confidence score indicating the probability that the song can be la-
beled by tag wi. Assuming each tag is independent and has identical
prior probability distribution, we have,
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Attribute Tag / Label Num
Genre Blues, Country, Electronica, Folk, Funk, 1-2

Gospel, HardRock, Jazz, Pop, Punk,
Rap, R&B, Rock-roll, SoftRock

Instrument Acoustic Guitar, Acoustic Piano, Bass, 1-5
Drum, Electric Guitar, Electric Piano,
Harmonica, Horn, Organ, Percussion,
Sax, String

Texture Acoustic, Electric, Synthetic 1-2

Vocal Group, Male, Female, None 1-2

Affective Positive, Neutral, Negative 1

Arousal Strong, Middle, Weak 1

Rhythm Strong, Middle, Weak 1

Tempo Fast, Moderato, Slow 1

Tonality Major, Mixed, Minor 1

Production Studio, Live 1

Table 1. The vocabulary contains 50 tags covering 10 attributes (se-
mantic categories). Each song is annotated using tags from each
attribute with number limitation.

yi = P (wi|X ) =
p(X|wi)P (wi)P

wk
p(X|wk)P (wk)

∝ ΠT
t=1p(xt|wi) (1)

In our previous work [7], we presented an approach to automatic
music annotation. Since there is no standard vocabulary for music
annotation, we first built a simplified (but still general) vocabulary,
containing 50 commonly used tags and covering 10 different mu-
sic attributes, as listed in Table 1. A song will be annotated using
tags from each attribute with number limitation, for instance, multi-
ple tags can be selected from attributes Genre, Instrument, Texture
and Vocal, while for other attributes, the tags are exclusive with each
other. A bag of beat-level features are then extracted from each song,
including timbre features (e.g. MFCC, spectral contrast) and rhythm
features (e.g. average tempo, rhythm regularity), and each tag is
modeled by a on-the-shelf GMM to estimate the posterior probabil-
ity (1). More details about music annotation can be found in [7].

It is noted that, in (1), yi is normalized across the tags from the
same attributes as the tag wi, instead of across the whole vocabulary.
The obtained annotation vector y = {yi} can be considered as a
confidence-based representation of a song. It can also be binarized
by selecting several largest yi in each attribute (set them to 1 and
others 0) [7]. In this work, both confidence and binary representation
are used and compared in music similarity learning.

3. THE SIMILARITY MEASURE

3.1. Formulation of Similarity Function

In general, different attributes of music play different roles when
people determine the similarity between songs. Furthermore, some
attributes are strongly correlated so that people tend to combine them
together to evaluate the music similarity. Based on these observa-
tions, we decide to construct a similarity function by using a set of
kernels, each of which measures on (one or multiple) different mu-
sic attributes. The general form of the similarity function used in our
approach is expressed as:

sim(yi,yj) =

NφX
n=1

βnφn(yi,yj) (2)

where yi and yj are the annotation vectors of two songs, φn is a pre-
defined kernel which in our approach is selected as cosine kernel, βn

is its corresponding weight, and Nφ is the number of kernels.

As mentioned above, each φn can measure on a subset of music
attributes, e.g. only on Genre, or on a combination of Genre and
Tempo. Depending on the number of attributes the kernel considers,
we group kernels into Kernel Families. For example, if a kernel
considers a combination of k music attributes, its kernel family is
denoted as Fk. Thus, assuming the total number of attributes is N
(in our case N = 10), there are Ck

N kernels in family Fk, where
each kernel considers different combination of k out of N attributes,
and is denoted as φk,l, l < Ck

N . Since a particular music attribute
corresponds to a sub-vector of the annotation vector y, representing
the tags only from this attribute, φk,l(yi,yj) can be computed from
the concatenated sub-vectors of yi and yj , representing k attributes.

Considering the kernel family, the similarity function becomes:

sim(yi,yj) =
X

k∈Ns

|Fk|X
l=1

βk,lφk,l(yi,yj) (3)

where |Fk| is the number of kernels in the kth family, and Ns is ker-
nel family set (a subset of {1, 2, · · · , N}), providing the opportunity
to select which kernel families to be used in the similarity function.
This is important because, adding more kernel families may intro-
duce over-fitting, especially when the training data is small. By se-
lecting Ns, we can control the generalization ability of the similarity
function, and the Ns can be determined by experiment.

3.2. Learning Similarity Measure

In this section, we present how to learn the weighting parameter
in the similarity function from a set of manually created playlists
(i.e., a training set) which specifies the ground truth similarity be-
tween songs. Intuitively, the best parameters minimize the difference
(squared error) between the ground truth similarity and the learned
similarity function. Regardless which kernel families are selected,
we use the general form of similarity function (2) in the following
cost function,

F (β) =
1

2

X
i,j

0
@Ki,j −

NφX
n=1

βnφn(yi,yj)

1
A
2

(4)

where Ki,j is the ground truth similarity of the ith and jth songs,
and β = [β1, ..., βNφ ]T , with constrain βn > 0. We apply this con-
strain to ensure the generalization of the learned similarity function.

The cost function (4) can be re-written in a matrix form:

F (β) =
1

2
βT Aβ − bβ + ‖K‖F (5)

where ‖K‖F is the Frobenius norm of ground truth similarity matrix
K, and the matrix A and vector b represented by

A(m, n) =
X
i,j

φm(yi,yj)φn(yi,yj)

b(m) =
X
i,j

Ki,jφm(yi,yj) (6)

where 1 ≤ m, n ≤ Nφ. The optimal β̂ = argminβ{F (β)} can
be iteratively solved by using Non-Negative Quadratic Optimization
[9], which is mainly based on Gradient Projection method.
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4. MUSIC PLAYLIST GENERATION

With the learned similarity measure, we further apply it in a real
application - music playlist generation. In this application, users first
select one or multiple seed songs to setup their preference (i.e., what
kind of songs they want to listen to), then a sequence of similar songs
will be recommended and a playlist is generated correspondingly.
Each song in the database can be ranked by a weighted sum of its
similarity to each specified seed, as,

f∗ =

NX
i=1

αisim(yi,y∗) (7)

where y∗ is a song in the database, f∗ is its corresponding ranking
score (or the estimated user preference score); yi is the i-th seed,
αi is the corresponding weight indicating the importance of seed yi,
and N is the number of seeds. The sim(·) is the similarity function
defined in (2).

The simplest strategy to determine αi is to use uniform weighting,
i.e. αi = 1/N , supposing each seed has the same importance. Alter-
natively, different seeds may have different importance to represent
user preference, so that they can be assigned different weights. For
example, [4] applies Gaussian Process Regression (GPR), where the
value of αi is determined by computing the inverse of the similarity
matrix of seeds:

α = C−1t (8)

where α = [α1, . . . , αN ]T is a weighting vector, C is the similarity
matrix of seeds with Cij = sim(yi,yj), and t = [t1, . . . , tN ]T is
the user’s preference to seeds (ti = 1 if like the seed; or 0 otherwise).
In our case, since users only select the seeds they like, all ti = 1.

However, (8) will encounter a problem if there exists an outlier
(noise) seed that is not similar to other selected seeds (i.e. far away
from other seeds in the feature space). Intuitively, the weight of such
outlier seed should be small, since it can not represent the majority
of the user preference. However, in contrast, (8) assigns the largest
weight to it. This is mainly because, in a regression problem esti-
mating target (user preference) from a number of samples (seeds), a
outlier only refers to a sample whose target is quite different from its
neighbors’ targets; a seed far away from others is not an outlier, but
a sample needs large weight to play its role in prediction.

We make a heuristic revision from (8) to address the aforemen-
tioned problem, by directly using the similarity matrix C to calculate
the weights, as

α = Ct (9)

where each element αi =
P

j sim(yi,yj). Apparently, for an outlier
seed which is dissimilar to others, its corresponding weight will be
smaller than others.

5. EXPERIMENTS

Our previous work [7] built a 5000-song data set for automatic mu-
sic annotation, on which an annotation accuracy of about 60% is
achieved. For music similarity learning in this work, the ideal train-
ing data had better indicate the similarity between every two songs
in the data set. However, it is very hard to obtain. Alternatively, we
collect 380 real user created playlists from Internet, and use them
to build the ground truth similarity matrix K in (4). In our experi-
ment, Ki,j = 1 if two songs co-occur in at least one playlist, oth-
erwise Ki,j = 0. We also tried different ways to calculate K, for
instance, by considering the co-occurrence frequency, however the
experiments don’t show any improvements.

While these playlists are sufficient for training, a big issue in eval-
uation is that, we only assume the songs in the same playlist are sim-
ilar, but the songs not in the same playlist may be also similar. This
is because the playlist may only contain a subset of similar songs
from a large data set. Thus, if we directly test on the 5000-song data
set, a number of “fake” false alarms are generated. For this reason,
in our objective evaluation, we only choose (randomly) a small test
set (200 songs) from our data set and manually create 23 playlists, in
which the songs in different playlists are more perceptually different
than those in the same playlist.

The evaluation process is similar to [4]: for each playlist, every
S (varies from 1 to 5) songs are selected as seeds, and then match
against the remaining songs in the same playlist (which are similar to
seeds) and the songs in other playlists (which are dissimilar to seeds).
A traditional collaborative filtering (CF) metric [4, 10] is used to
measure the quality of the generated playlists. The corresponding
score of the jth trial is defined as,

Rj =

NjX
i=1

tji

2(i−1)/(β−1)
(10)

where tji = 1 if the ith song in the generated playlist is from the
same playlist as the seeds, otherwise tji = 0. β is a ”half-life” of
user interest in the playlist (set to 10 here), and Nj is the number of
test songs in the jth trial. The score is summed over all trials and
normalized:

R = 100
X

j

Rj/
X

j

Rbest
j , (11)

where Rbest
j is the best score can be achieved from (10) when all

the similar songs are at the head of the generated playlist. Thus, an
R score of 100 indicates the best result.

We first carry out an experiment to determine the kernel family
set NS used in (3), using the confidence based annotation and the
ranking method (9). While there are many possibilities to select NS ,
we only test a subset of them. NS is first set to {10}, which con-
tains only one kernel composing of all the attributes, and is usually
used in the previous work and also taken as our baseline. Then we
incrementally add kernel family 1,2,...,9 into Ns one by one, and
finally we obtain and compare with 10 similarity functions whose
Ns are {10}, {1, 10},...,{1, 2, ..., 9, 10}. The comparison result is
illustrated in Fig. 1. From the result, we observe that the best per-
formance is achieved when NS = {1, 2, 10}, whatever the number
of seeds is. With more kernel families added, the performance de-
creases, mainly due to the over-fitting problem. Therefore, in the
following experiments, we fix NS to be {1, 2, 10}. We also find
the learned weights of the “Genre” related kernels are significantly
larger than others, indicating the importance of Genre in determina-
tion of music similarity.

In the second experiment, we compare different weighting
method in Section 4, including our method (9), GPR (8), and uni-
form weighting, and compare the results without/with using outlier
seed, while keep using confidence based annotation. The compar-
ison results are shown in Table 2. We can see that, in both cases,
our method performs best. When an outlier seed is introduced (by
replacing one seed in the original seeds with a song from another
playlist), our approach has the least degeneration (2 points in aver-
age) compared with others. It is interesting to note, in both cases,
GPR ranking has the worst performance.

The third experiment compares our method with two baselines:
random selection and cosine similarity measure on all the attributes,
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Fig. 1. Evaluation results comparing various kernel families and the
number of seeds, using confidence based annotation and the ranking
method (9)

#seed w/o outlier seed w/ outlier seed
ours GPR uni. ours GPR uni.

1 32.8 32.8 32.8 NA NA NA
2 37.6 37.0 37.0 NA NA NA
3 39.9 38.0 39.2 32.6 29.1 31.7
4 41.3 39.1 40.8 37.6 31.7 36.4
5 43.0 39.1 42.7 40.5 33.0 39.1

Table 2. Results comparing different ranking methods including our
method (ours), GPR, and uniform weighting (uni.), different seed
number, and different seed selection, including without outlier seed
and with outlier seed (only when the seed number is larger than 2)

when fixing NS = {1, 2, 10} and the ranking method (9). We also
compare different annotation schemes, including manual annotation
(with oracle music attributes), automatic annotation with confidence
score or binary score. The results are shown in Table 3, from which
we can observe: First, all the approaches work much better than the
random selection; and moreover, our method consistently outper-
forms the direct cosine measure (by 3.3 points in average), indicat-
ing the proposed approach can learn something reflecting underlying
music similarity. Second, using confidence score in annotation ob-
tains a consistent improvement (about 1 point) compared with the
binary annotation. This is understandable since the confidence score
contains richer information than binary one. Third, comparing with
the manual annotation, the performance based on automatic anno-
tation is comparable, with a gap of 4.8 points (when the annotation
accuracy is about 60%); with the number of seeds increases, the per-
formance gets closer to that of manual annotation.

Besides the objective evaluation, we also perform a preliminary
subjective evaluation on our 5000-song data set. In this experiment,
we first randomly select 10 songs as seeds, and for each seed we gen-
erate a playlist containing 10 most similar songs to the seed. Three
subjects are invited to rate each song in the generated playlist based
on its perceptual similarity to the seed, with 5 scores from 1 (not
similar at all) to 5 (very similar). The average rating score across all
playlists achieves up to 4.2, which indicates that most of the recom-
mended songs are similar to the seeds in terms of the human percep-
tion.

All the experiments also show that, with automatic annotation, we
can get encouraging results on music similarity measure and music
playlist generation. Considering the advantage of automatic anno-
tation, it is feasible to employ automatic annotations in other music
applications, dealing with a large music database.

#seed Random Baseline Kernel + Ranking
− conf. conf. bin. oracle

1 8.7 29.4 32.8 31.9 38.0
2 9.0 34.7 37.6 36.8 44.6
3 8.1 36.2 39.9 38.8 44.2
4 8.5 38.1 41.3 40.6 46.8
5 8.0 39.6 43.0 42.0 45.3

Table 3. Results comparing our method with random selection and
Cosine baseline, as well as different annotation schemes, including
manual annotation with oracle music attributes (oracle), automatic
annotation with confidence score (conf.) and binary score (bin.)

6. CONCLUSION AND FUTURE WORK

In this paper, we present an approach to learn a music similarity
measure based on automatically detected music attributes, and ap-
ply it in automatic music playlist generation. Extensive experiments
compare various methods/variants, and show the advantage of the
learned similarity measure and show the encouraging results of the
playlist generation. With an annotation accuracy of about 60%, the
generated playlists is comparable to those based on manual annota-
tions. And, as indicated by the high subjective ranking score, most
of the recommended songs are similar to the seeds. There is still
considerable room to improve music similarity measure and music
playlist generation. For example, we can investigate more music at-
tributes or incorporate social data and other metadata in similarity
measure; we will also exploit and utilize user interactions to achieve
better music recommendation.
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